Informatik für die Welt von Morgen

IBBB 2012 (01.03.2012, Berlin)

Tobias Schlauch < Tobias. Schlauch @dlr.de >

Andreas Schreiber < Andreas. Schreiber @dlr.de >

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR),

Berlin-Adlershof / Braunschweig / Köln-Porz

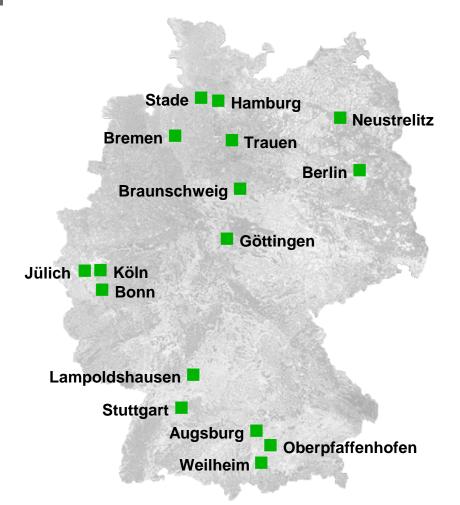
http://www.dlr.de/sc

Informatik für die Welt von Morgen

Überblick

- Das DLR
- Software im DLR
- Informatik und Softwaretechnologie
- Nachwuchs-Förderung

Das DLR Deutsches Zentrum für Luft- und Raumfahrt


- Forschungseinrichtung
- Raumfahrt-Agentur
- Projektträger

Standorte und Personal

Circa 7.000 Mitarbeiterinnen und Mitarbeiter arbeiten in 32 Instituten und Einrichtungen in 16 Standorten.

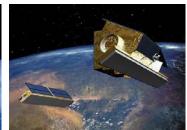
Büros in Brüssel, Paris und Washington.

Leitbild - Mission

- Erforschung der Erde und des Sonnensystems, Forschung zum Erhalt der Umwelt, zur Mobilität, zur Gewährleistung der Sicherheit und zur Bearbeitung gesellschaftlicher Fragen im öffentlichen Auftrag
- Brückenfunktion von Grundlagenforschung und innovativen Anwendungen sowie Transfer von Wissen und Forschungsergebnissen zu Industrie und Politik durch Vermittlung, Beratung sowie Dienstleistungen
- Gestaltung des deutschen Raumfahrtengagements und internationale Interessenvertretung als hoheitliche Aufgabe
- Leistung eines signifikanten Beitrags zum Wissenschafts- und Wirtschaftsstandort Deutschland und zum europäischen Wachstumsraum
- Ausbildung des wissenschaftlichen Nachwuchses zur Steigerung der Innovationsfähigkeit Deutschlands

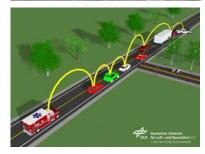
DLR Forschungsbereich Luftfahrt

- Optimierung der Leistung und der Umweltverträglichkeit des Gesamtsystems "Flugzeug"
- Erweiterung des Flugbereichs von Hubschraubern auf alle Wetterbedingungen
- Effiziente und umweltfreundliche Flugtriebwerke
- Sicherer, umweltfreundlicher und effizienter Luftverkehr (Flugsicherung, Flugbetrieb)


DLR Forschungsprogramm Raumfahrtforschung und -technologie

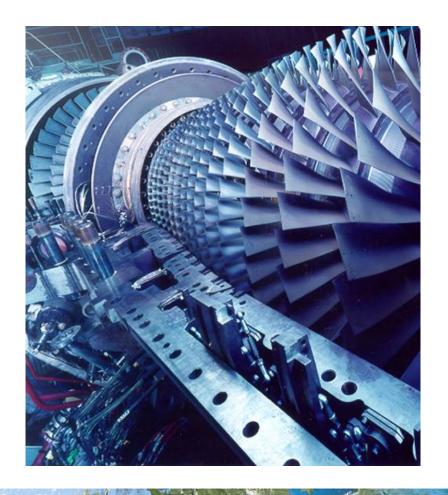
- Erforschung des Weltraums
- Forschung unter Schwerelosigkeit
- Erdbeobachtung
- Kommunikation & Navigation
- Raumtransport
- Technik für Raumfahrtsysteme

DLR Forschungsbereich Verkehr


- Nachhaltige Mobilität erreichen in einer Balance von
 - Ökonomie
 - Gesellschaft
 - Ökologie

durch

- Sicherung der Mobilität für Menschen und Güter
- Schutz von Umwelt und Ressourcen
- Verbesserung der Sicherheit



DLR Forschungsbereich Energie

Der DLR Forschungsbereich Energie konzentriert sich auf

- -CO2-Vermeidung durch Effizienz und Erneuerbare Energien
- -Synergien im DLR
- -energiewirtschaftlich relevante und großforschungsspezifische Themen.

Die Welt von Morgen

Die Entwicklungen beeinflussen unsere Welt von Morgen...

Neue Flugzeuge, neue Verkehrskonzepte, Raumfahrt, ...

Informatik und Software hat entscheidenden Anteil

Software im DLR

Größenordnung der Software-Entwicklung

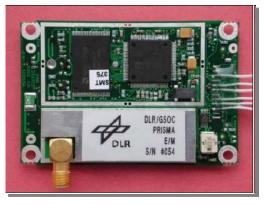
Über 1000 Mitarbeiter des DLR entwickeln Software

Das sind >100 Millionen EUR Vollkosten pro Jahr

DLR ist eines der größten Software-Häuser Deutschlands

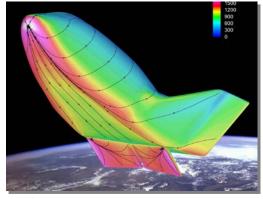
Software im DLR Individualsoftware

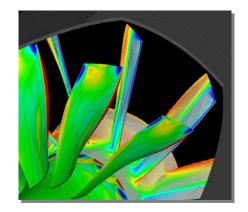
- Ein Großteil der entwickelten Software im DLR ist Individualsoftware
- Entwicklung gemäß der speziellen Anforderungen des DLR
- Gründe
 - Es gibt keine verfügbare geeignete Standardsoftware am Markt
 - Es gibt Standardsoftware, die Individualsoftware wird jedoch monetär günstiger bewertet
 - Man möchte vollständige Kontrolle über die weitere Entwicklung
 - Die Software soll einen Wettbewerbsvorteil verschaffen
 - "Das Rad neu erfinden": Die angestrebte Lösung soll noch besser werden, als die verfügbare Standardsoftware

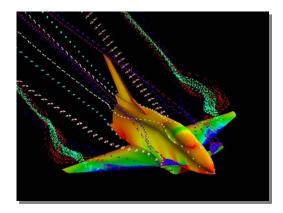


Software in der Luft- und Raumfahrt Software mit hoher Kritikalität

- Echtzeitfähige Software und Software für eingebettete Systeme
 - Bsp.: Lageregelungssysteme für Flugzeuge und Raumfahrzeuge
- Hohe Anforderungen an Ausfallsicherheit und Fehlerfreiheit
- Steuert oft technische Systeme
- Häufig ist das Leben von Menschen von ihr abhängig

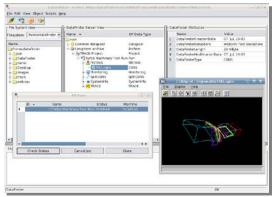


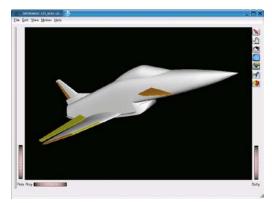




Software in der Luft- und Raumfahrt Simulationssoftware

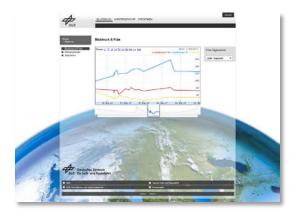
- Simulation physikalischer Vorgänge oder komplexer Systeme
 - Bsp.: Numerische Strömungssimulation
- Oft hohe Anforderungen an Genauigkeit und Performanz
- Ausführung auf High-Performance-Computing-Systemen ("Supercomputing")
- Erzeugt oft große Datenmengen





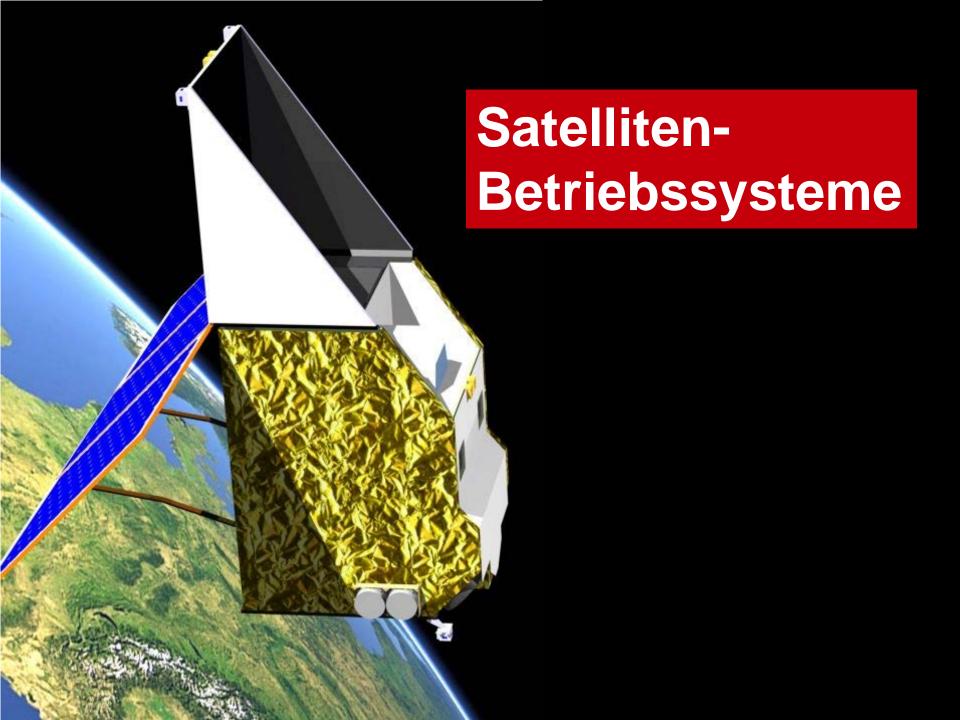
Software in der Luft- und Raumfahrt Unterstützende Software

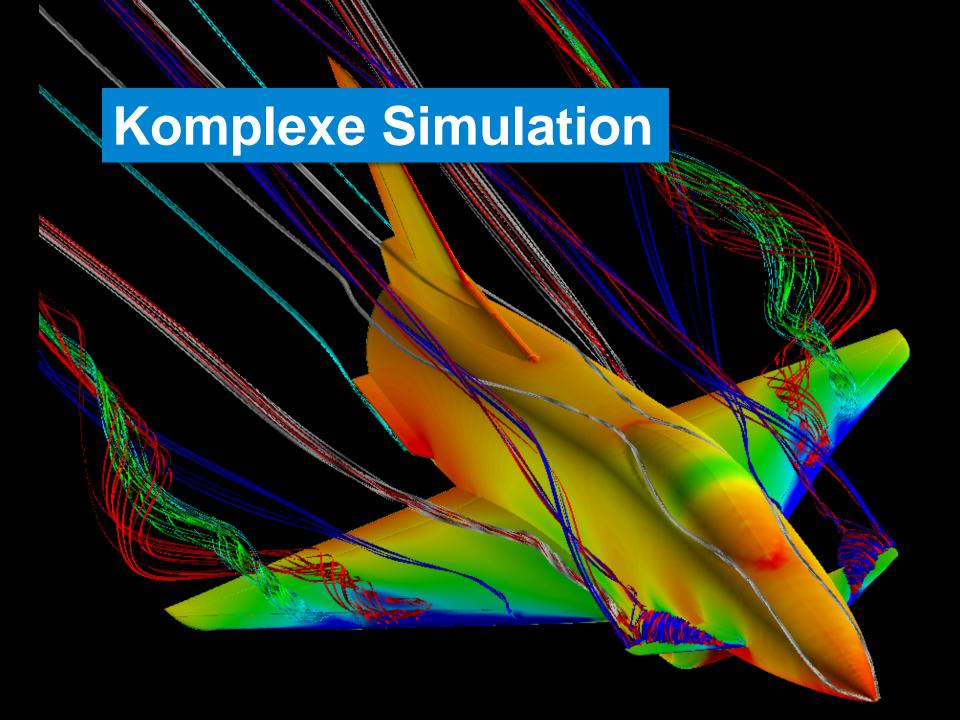
- Unterstützt die Arbeit der Wissenschaftler
- Erhöht die Produktivität
- Beispiele:
 - Verwaltung von wissenschaftlichen Daten
 - Wissensmanagement und Expertensysteme
 - Grafische Auswertung und Visualisierung

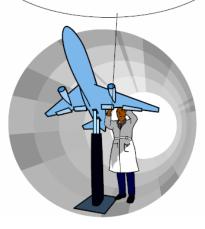


Software in der Luft- und Raumfahrt Administrative Software (SW für große Nutzerzahlen)

- Häufig Web-basierte Software für Internet oder Intranet
- Oft mit Anbindung an Unternehmenssoftware (SAP)
- Beispiele:
 - Beantragen von Reisen oder Urlaub
 - Verwaltung von IT-Ressourcen
 - Information der Öffentlichkeit







Informatik für Wissenschaftler und Ingenieure Software zum Lösen von Problemen

Wissenschaftler und Ingenieure wollen eigentlich keine Software entwickeln sondern ihre Probleme lösen

"I want to design planes, not software!"

Möglichst schnelles Umsetzen ihrer Ideen in laufenden Code

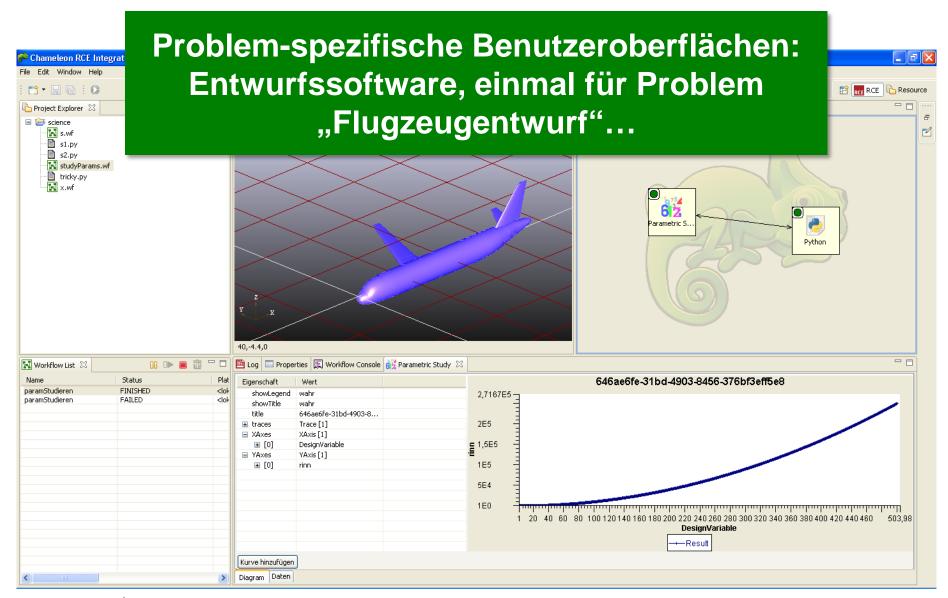
Wenn sie Code schreiben, sollte es so einfach wie möglich sein

Informatik für Wissenschaftler und Ingenieure Randbedingungen und Anforderungen

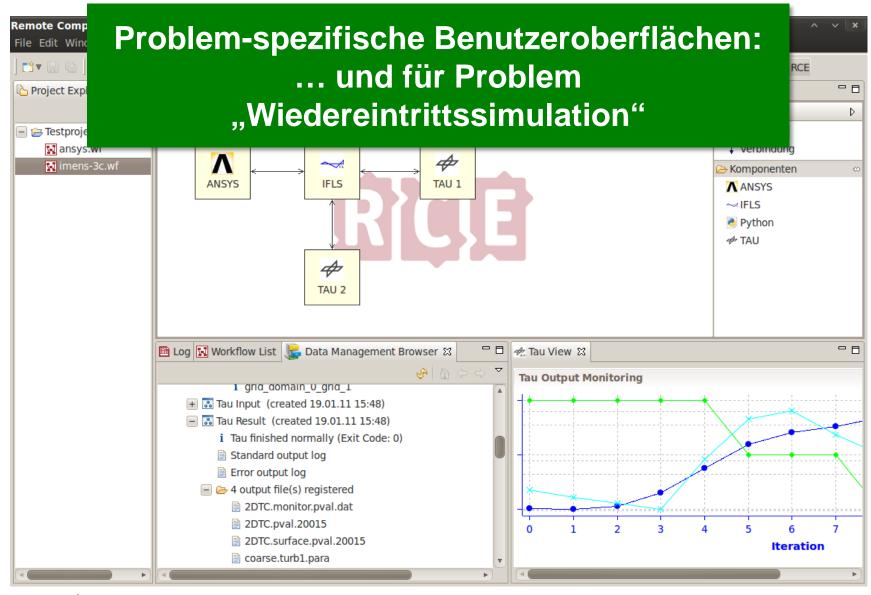
Informatik und Softwaretechnologie müssen die Anwender effektiv unterstützen

Die wissenschaftliche Freiheit und Kreativität darf nicht behindert werden

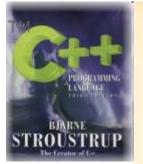
Notwendig sind benutzbare, einfach zugängliche Softwaretechnologien und nahtlos Integration in bestehende Arbeitsumgebungen


Informatik für Wissenschaftler und Ingenieure Beispiele für notwendige Software(-technologien)

Problem-spezifische Benutzeroberflächen


Leicht zu erlernende Programmiersprachen

"Schmerzfreies" Software Engineering


Leicht zu erlernende Programmiersprachen Die Vielfalt der Sprachen...

- In Praxis viele Sprachen im Einsatz
- Im DLR allein ca. 30 Sprachen
- Oft eng begrenzte Anwendungsgebiete
- Viele Faktoren beeinflussen die Wahl der Sprache:
 - Anforderungen
 - Ziel-Plattformen und Plattformunabhängigkeit
 - Vorhandene Software
 - Vorhandenes Know-How (Personal!)
 - Performanz
 - Erlernbarkeit

- ...

Mic

Programmiersprachen im DLR

KERNIGHAN M.RITCHIE

A SCITTWARE SERIES

Java

Leicht zu erlernende Programmiersprachen Die Sprache der Wahl für Wissenschaftler: Python

- Allgemein verwendbare Skriptsprache
- Sehr leicht zu erlernen und einfach zu benutzen (= steile Lernkurve)
- Rapid Application Development (= kurze Entwicklungszeit)
- "Inherent great maintainability" (= Investitionsschutz)
- Sehr geeignete Lehr- und Einsteigersprache

Leicht zu erlernende Programmiersprachen Python-Beispiel

```
def fakultaet(x):
    if x > 1:
        return x * fakultaet(x - 1)
    else:
        return 1
```


Schmerzfreies Software Engineering

- Software Engineering wichtig für Software von hoher Qualität
 - Softwareentwicklungsprozesse
 - Geeignete Entwicklungswerkzeuge
 - Software-Tests
- Softwareentwicklung durch Wissenschaftler und Ingenieure
 - Oft nur Mittel zum Zweck
 - Jedoch erheblicher Anteil an täglicher Arbeitszeit
 - Software-Engineering-Technologien sollen Produktivität und Qualität verbessern, aber wissenschaftliche Arbeit nicht behindern
- Daher Herausforderung der Zukunft: Wie macht man Wissenschaftlern Software Engineering schmackhaft?
 - Aktuelles Forschungsgebiet (auch) im DLR

Software entwickeln ist Teamarbeit Interdisziplinäre Teams

- Software wird im DLR meist in interdisziplinären Teams entwickelt
- Informatiker entwickeln gemeinsam mit Ingenieuren, Mathematikern, Physikern, Chemikern, Medizinern, ...
- Informatiker bekommen viele Einblicke in verschiedenste Fachdisziplinen

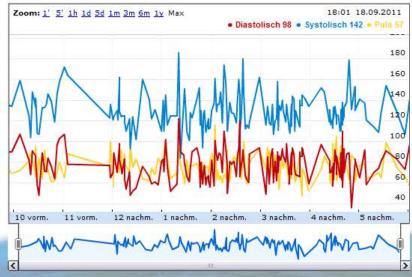
Software entwickeln ist Teamarbeit Notwendige Kompetenzen

- Gute Kommunikation in Entwicklungsprojekten notwendig für erfolgreiche Resultate
- Interesse, Lust und Spaß am kommunizieren mit "fremden"
 Fachdisziplinen ist daher sehr wichtig
- "Ideale" Informatiker für Einrichtungen wie dem DLR bringen Interesse an Naturwissenschaften und wollen die Zukunft mit gestalten
 - Das DLR unterstützt dabei mit Nachwuchs-Programmen

Web-Anwendungen

Beispiel: Blutdruck-Aufzeichnung

- Web-Seite zum Darstellen von Blutdruck- und Gewichtsverläufen
- Realisiert als **Projekt eines Schülerpraktikanten** (Juli 2011)
- Verlauf
 - 1. Tag: Programmiersprache (Python) lernen
 - 2. Tag: Web-Framework (Django) kennenlernen
 - 3. Tag: Anforderungen genauer erfassen
 - 4. Tag: Graphik-Bibliotheken evaluieren
 - 5. Tag: Medizinisches Fachwissen anlesen und medizinische Datenmodelle kennenlernen
 - 6.-10. Tag: Implementierung, Diskussion mit Kollegen und Hinzufügen weiterer Funktionen
- Nutzung als telemedizinische Demo-Anwendung auf Veranstaltungen (Konferenzen, Tag der Luft- und Raumfahrt)



Home » Blutdruck Blutdruck & Puls

Körpergewicht

Statistiken

Blutdruck & Puls

Filter Tageszeiten

Jede Tageszeit

Deutsches Zentrum DLR für Luft- und Raumfahrt

- △ DLR
- DLR Simulations- und Softwaretechnik

- Tag der Luft- und Raumfahrt
- DLR Software Portal

Nachwuchs-Förderung

- Schüler- und Jugendprogramme
 - DLR_School_Lab
 - DLR_next
 - Schülerpraktika in Instituten
- Angebote für Studenten
 - Durchführung von Praktika
 - Diplom-, Bachelor-, Masterarbeiten

DLR_School_Lab

Zielgruppen

 Schüler und Schülerinnen der Mittel- und Oberstufe

Lehrerinnen und Lehrer

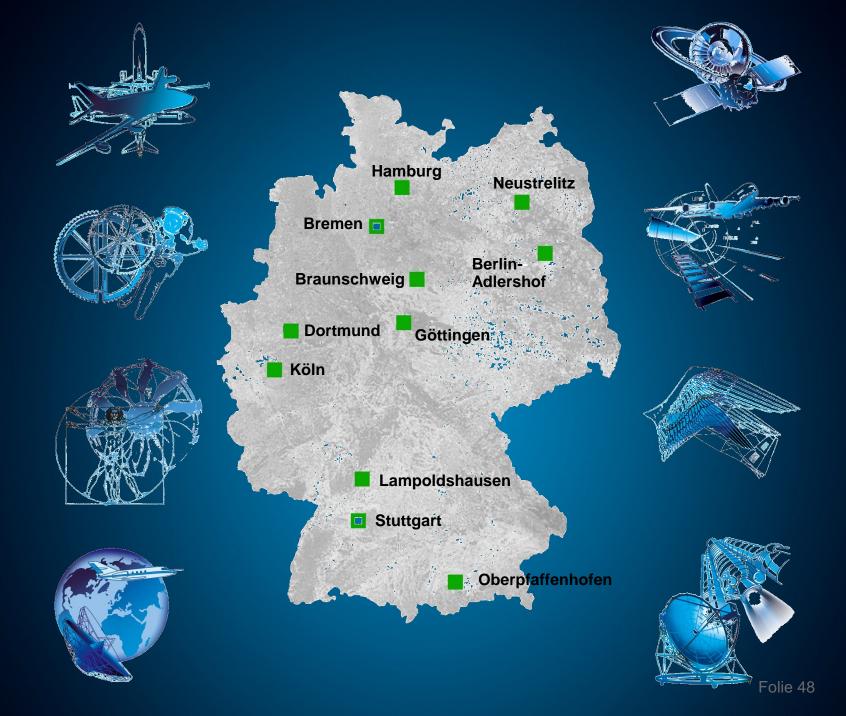
Interessierte Öffentlichkeit

Interesse Wecken

Faszination

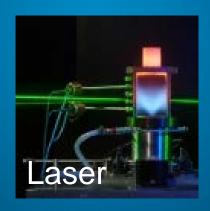
Authentizität

Experimentieren



Angebot

- Forschungsnahe Experimente in authentischer Umgebung
- Einführungsvorträge,
 Unterrichtsmaterialien
- Auswertung, Diskussion der Ergebnisse
- Multimedia Präsentationen
- Anschauungsobjekte


Experimente in Berlin-Adlershof

Experimente in Braunschweig

Experimente in Köln

Kometensimulation

Infrarot

Werkstoffe

Solare Wasserreinigung

Aktive Lärmkontrolle

Brennstoffzellen

Schwerelosigkeit

Gravitationsbiologie

Vakuum

Kreislaufphysiologie

Der Traum vom Fliegen

http://www.dlr.de/schoollab/koeln

Vorlauf für Besuchstermine:

3-4 Monate je nach Standort

Weitere Informationen: www.dlr.de/schoollab www.raumzeit-podcast.de/2012/02/10/

DLR_next

- DLR-Jugendportal im Internet
 - http://www.DLR.de/next
- Informationen und Multimedia-Angebote zu Forschungsthemen des DLR
- Zielgruppe:
 - Jugendliche
 - Schüler
 - Kinder
- Begleitet durch Twitter @DLR_next

Informationen

Spiele

Arbeiten im DLR

